AQA Computer Science A-Level
4.3.5 Sorting algorithms
Advanced Notes

© www.pmteducaton Q@ @) PMTEducation

SEPMT

resources-tuition-courses

Specification:

4.3.5.1 Bubble sort

Know and be able to trace and analyse the time complexity of the
bubble sort algorithm. This is included as an example of a particularly
inefficient sorting algorithm, time-wise. Time complexity is O(n?).

4.3.5.2 Merge sort

Be able to trace and analyse the time complexity of the merge sort
algorithm. The 'merge' sort is an example of 'Divide and Conquer' approach
to problem solving. Time complexity is O(nlogn).

O www.pmteducation Q@@) PMTEducation

SPMT 3

resources-tuition-courses

Sorting Algorithms
In the case of a sorting algorithm, the task is to put the

A[ggrithm elements of an array into a
specific order. A sorted list can

An algorithm is a set of often be more useful than an Synoptic Link

instructions which unsorted one. A binary search can

completes a task and only be used on a sorted list, O(legn) and O(n) are

always terminates. h i h b examples of Big O
whereas a linear search can be notation. Big O is a way of

: : used on either. Binary searches classifying algorithms
noptic Link . :

SY P (O(logN)) are a lot faster than based on time and space
. complexity. In this case,
linear searches (O(N)), so sorted e S :

Binary and linear searches [(O _))) O(n) is more complex than

AR e Al lists can reduce the time it takes to ReH{EEG)

algorithms. They are locate an item. There are multiple o '

designed to locate a named : - ; ig O is covered in

itl.‘-mgirn ‘; iy different sorting algorithms of Classification of Algorithms

: varying complexity. The two under Fundamentals of

Algorithms.

SNEGELCRIEEEEES PEEIE investigated below are the bubble

A",wr“d i sort and the merge sort.
gorithms under

Fundamentals of Algorithms.

Sorting Algorithms Overview:

To be sorted into ascending order: 1 2 3 8
Merge Sort

Bubble Sort
Make passes through the ‘Divide and Congquer’ Method -
data and swap adjacent split array up into individual
iterns, Stops passing through sorted lists and then merge
data when no swaps are them together. BigO is
performed. BigO is O(n?) O(nlogn)
|
12 (1 3 ||| 8
Pass1:1238—-3128-3812 |/, | —
Pass2:3812 ~3812 3812 2] 3 8
— —
Sorted list: 38 12 12 \ / 3
3 |12
T
3 g |12

© wwwpmteducaton Q@@ C) PMTEducation

Bubble Sort Example 1:

SPMT

resources-tuition-courses

Bubble Sort

The following array needs to be sorted into ascending order.

The bubble sort algorithm uses the idea of swapping the position of adjacent items to
order them. It has a time complexity of O(n?) so it is very inefficient.

Position |[© 1 2 3 4

Data Freddie Brian Roger Adam John
The first step is to compare the first two pieces of data.

Position |0 1 2 3 4

Data Freddie Brian Roger Adam John
Freddie > Brian. Therefore Freddie and Brian should swap places.

Position |0 1 2 3 4

Data Brian Freddie Roger Adam John
Position 1 is now checked against position 2.

Position |0 1 2 3 4

Data Brian Freddie Roger Adam John
Freddie < Roger. Hence they are in the correct order, and do not need to be swapped.

Position |[© 1 2 3 4

Data Brian Freddie Roger Adam John

The data in position 2 of the array is checked against the data in position 3.

Position |0 1 2 3 4
Data Brian Freddie Roger Adam John
O www.pmteducation Q@@) PMTEducation

g s PMT

resources-tuition-courses

Roger > Adam. They should swap positions.
Position |@ 1 2 3 4

Data Brian Freddie Adam Roger John

The third and fourth positions are checked.
Position %) 1 2 3 4

Data Brian Freddie Adam Roger John

Roger > John, so they should swap positions in the array.

Position 0 1 2 3 4

Data Brian Freddie Adam John Roger

There are no more positions to check. We can now say that we have made one pass
through the data. We also know that the data in the last position, “Roger”, is in the
correct position - we will highlight this in green to show that it does not need to be
checked again; a good bubble sort algorithm will not have to check the last position.
From looking, we can also see that “John” is in the correct position, however a computer
will not know this until the second pass has been made.

The first two positions are checked again.

Position 0 1 2 3 4

Data Brian Freddie Adam John Roger

Brian < Freddie. They are ordered, so should not be swapped.

Position 0 1 2 3 4

Data Brian Freddie Adam John Roger

Position 1 is checked against position 2.

Position 0 1 2 3 4

Data Brian Freddie Adam John Roger

D www.pmteducation Q@ E)C) PMTEducation

g s PMT

resources-tuition-courses

Freddie > Adam. These pieces of data should swap positions.

Position 0 1 2 3 4

Data Brian Adam Freddie John Roger

The second and third positions are checked.

Position 0 1 2 3 4

Data Brian Adam Freddie John Roger

Freddie < John, so they do not have to be swapped.

Position 0 1 2 3 4

Data Brian Adam Freddie John Roger

We can now say that we have made two passes through the data. Now John is
definitely in the correct position, so it will be locked down, and there is no need to check
it on the next pass.

The first two positions are checked again.

Position 0 1 2 3 4

Data Brian Adam Freddie John Roger

Brian > Adam. They should swap positions.

Position 0 1 2 3 4

Data Adam Brian Freddie John Roger

We can see that the data is correctly ordered, but a computer has no way of telling this.
It can only determine that the list is in the correct order if it makes a pass through the
data with no swaps.

The data in position 1 and 2 are checked.

Position 0 1 2 3 4

Data Adam Brian Freddie John Roger

www.pmteducation Q@@) PMTEducation

SPMT 3

resources-tuition-courses

Brian < Freddie. They do not need to be swapped.

Position 0 1 2 3 4

Data Adam Brian Freddie John Roger

We have now made a third pass through the data. The algorithm knows that the item in
position 2, “Freddie” is in the correct place.

The data in position 0 and 1 are checked against each other.

Position 0 1 2 3 4

Data Adam Brian Freddie John Roger

Adam < Brian. They do not need to be swapped. The data is now in the correct order.

Note

Bubble Sort Example 2:

It is also possible to sort
this list into ascending
The following data needs to be sorted into descending order. RElEEEELLRGELRETEEER YT
end result - this could
save time programming if
you have already written
the algorithm for an
ascending sorting
algorithm.

Position |© 1 2 3 4 5 6

Data Hannah | Jo Jon Bradley | Paul Tina Rachel

The first two pieces of data are checked.

Position |© 1 2 3 4 5 6

Data Hannah |Jo Jon Bradley |Paul Tina Rachel

© www.pmteducaton Q@ @) PMTEducation

(—

PMI

resources-tuition-courses

Hannah < Jo. Hence they need to be swapped.

Position |9 1 2 3 4 5 6

Data Jo Hannah | Jon Bradley |Paul Tina Rachel
The data in position 1 and 2 are checked.

Position | © 1 2 3 4 5 6

Data Jo Hannah |Jon Bradley |Paul Tina Rachel
Hannah < Jon so they swap positions.

Position |0 1 2 3 4 5 6

Data Jo Jon Hannah |Bradley |Paul Tina Rachel
Positions 2 and 3 are checked.

Position |0 1 2 3 4 5 6

Data Jo Jon Hannah |Bradley |Paul Tina Rachel
Hannah > Bradley, so they do not swap.

Position |@ 1 2 3 4 5 6

Data Jo Jon Hannah |Bradley |Paul Tina Rachel
The data in 3 and 4 are checked against one another.

Position |© 1 2 3 4 5) 6

Data Jo Jon Hannah |Bradley ([Paul |Tina Rachel
Bradley < Paul, so they swap positions.

Position |0 1 2 3 4 5 6

Data Jo Jon Hannah |Paul Bradley | Tina Rachel

O wwwpmteducation Q@@) PMTEducation

(—

Next, positions 4 and 5 are examined.

PMI

resources-tuition-courses

Position |0 1 2 3 4 5 6

Data Jo Jon Hannah |Paul |[Bradley |Tina Rachel
Bradley < Tina, so they should swap.

Position 0 1 2 3 4 5 6

Data Jo |[Jon Hannah |Paul Tina |Bradley |Rachel
Data in positions 5 and 6 are next to be checked.

Position 0 1 2 3 4 5 6

Data Jo [Jon Hannah |Paul Tina Bradley | Rachel
Bradley < Rachel, so they swap positions.

Position 0 1 2 3 4 5 6

Data Jo Jon Hannah |Paul Tina Rachel |Bradley
We have made one pass through the data, so Bradley is locked in place.

Position 0 1 2 3 4 5 6

Data Jo Jon Hannah |Paul Tina Rachel |Bradley
The second pass begins by checking positions 0 and 1.

Position 0 1 2 3 4 5 6

Data Jo Jon Hannah |Paul Tina Rachel |Bradley
Jo < Jon, so they are swapped.

Position 0 1 2 3 4 5 6

Data Jon Jo Hannah |Paul Tina Rachel | Bradley

O wwwpmteducation Q@@) PMTEducation

SPMT

resources-tuition-courses

Positions 1 and 2 are now observed.

Position 0 1 2 3 4 5 6

Data Jon Jo Hannah | Paul Tina Rachel [Bradley
Jo > Hannah, so they do not swap positions.

Position | 0@ 1 2 3 4 5 6

Data Jon Jo Hannah |Paul Tina Rachel | Bradley
Positions 2 and 3 are checked.

Position |0 1 2 3 4 5 6

Data Jon Jo Hannah |Paul Tina Rachel | Bradley
Hannah < Paul. They swap positions.

Position | © 1 2 3 4 5 6

Data Jon Jo Paul Hannah | Tina Rachel | Bradley
The data in positions 3 and 4 are observed.

Position | © 1 2 3 4 5 6

Data Jon Jo Paul Hannah |Tina Rachel |Bradley
Hannah < Tina, so they swap.

Position (0@ 1 2 3 4 5 6

Data Jon Jo Paul Tina Hannah | Rachel |Bradley
4 and 5 are examined.

Position 0 1 2 3 4 5 6

Data Jon Jo Paul Tina Hannah |Rachel [Bradley

D www.pmteducation Q@ E)C) PMTEducation

Hannah < Rachel. They have to swap.

——
OO

PMI

resources-tuition-courses

Position | © 1 2 3 4 5 6

Data Jon Jo Paul Tina Rachel |Hannah |Bradley
We have made a second pass through the data, so Hannah is locked down.

Position |© 1 2 3 4 5 6

Data Jon Jo Paul Tina Rachel |Hannah |Bradley
The third pass starts by checking the data in the first two positions.

Position | @ 1 2 3 4 5 6

Data Jon Jo Paul Tina Rachel |Hannah |Bradley
Jon > Jo. They are in order, so do not need to swap.

Position | @ 1 2 3 4 5 6

Data Jon Jo Paul Tina Rachel |Hannah | Bradley
The data in positions 1 and 2 need to be checked.

Position |© 1 2 3 4 5 6

Data Jon [Jo Paul Tina Rachel |Hannah |Bradley
Jo < Paul, so they swap positions.

Position |0 1 2 3 4 5 6

Data Jon Paul Jo Tina Rachel |Hannah |Bradley
Positions 2 and 3 are examined.

Position | © 1 2 3 4 5 6

Data Jon Paul Jo Tina Rachel |[Hannah |Bradley

D www.pmteducation Q@ E)C) PMTEducation

Jo < Tina. They trade positions.

——
.Q

PMI

resources-tuition-courses

Position | © 1 2 3 4 5 6

Data Jon Paul Tina Jo Rachel |Hannah |[Bradley
The items in positions 3 and 4 are tested.

Position | © 1 2 & 4 5 6

Data Jon Paul Tina Jo Rachel |Hannah |Bradley
Jo < Rachel, so they swap places.

Position |0 1 2 3 4 5 6

Data Jon Paul Tina Rachel |Jo Hannah |Bradley
The third pass has been completed; Jo is locked in place.

Position |0 1 2 3 4 5 6

Data Jon Paul Tina Rachel |Jo Hannah | Bradley
The fourth pass starts with the first two positions.

Position (6 1 2 3 4 5 6

Data Jon Paul Tina Rachel |Jo Hannah | Bradley
Jon < Paul. They swap.

Position | @ 1 2 3 4 5 6

Data Paul |Jon Tina Rachel [Jo Hannah | Bradley
The data in positions 1 and 2 are inspected.

Position | © 1 2 3 4 5 6

Data Paul |Jon Tina Rachel |Jo Hannah |Bradley

www.pmteducation Q@@) PMTEducation

SPMT

Jon < Tina. They trade positions.

Positions 2 and 3 are examined next

Position [0 1
Data Paul |[Tina

Jon < Rachel. They swap places.

Position | © 1
Data Paul |[Tina

A fourth pass has been made through the data so Jon can be locked in place.

Position | © 1 2
Data Paul |Tina Rachel

The fifth pass begins by checking positions 0 and 1.

Position | @

Data Paul

Position

Data

Paul < Tina, so they swap positions.

Position

Data

Next, items 1 and 2 are inspected.

Position | ©
Data Tina

O www.pmteducation Q@ @) PMTEducation

SPMT

resources-tuition-courses

Paul < Rachel. Hence, they trade places.

Position |0 1 2 3 4 5 6

Data Tina |Rachel |Paul Jon Jo Hannah |Bradley

The fifth pass has been made through the data, so Paul is locked in place.

Position | @ 1 2 3 4 5 6

Data Tina |Rachel |Paul Jon Jo Hannah |Bradley

We can see that the data is sorted, but the computer must make a pass through the
data with no swaps to determine this.

The sixth pass checks positions 0 and 1.

Position | © 1 2 3 4 5 6

Data Tina |Rachel |Paul Jon Jo Hannah |Bradley

Tina > Rachel, so they do not swap. The list is sorted.

Bubble Sort Example 3

A question may ask you how the data looks after a stated number of passes, or how
many passes are required to sort the array. The below example only shows how the list
would look after each pass.

Here is our unsorted list:

Position | © 1 2 3 4 5 6
Data Mon Tues Weds Thurs Fri Sat Sun
First Pass:

Position | © 1 2 3 4 5 6
Data Mon Tues Thurs Fri Sat Sun Weds

O wwwpmteducation Q@@) PMTEducation

SPMT

Second Pass:

Position |0 1 2

Data Mon Thurs Fri
Third Pass:

Position | © 1 2

Data Mon Fri Sat
Fourth Pass:

Position |0 1 2

Data Fri Mon Sat

Although the data is sorted, the computer needs to make a pass through the data where
there are no swaps.

Fifth Pass:

Position

Data
This list took 5 passes through the data to be sorted.

© wwwpmteducaton Q@@ C) PMTEducation

SEPMT

resources-tuition-courses

Pseudocode (Ascending)

Integer Max
String Temp
Boolean Swapped
Integer Passes

Max < List.Count - 1
Swapped < TRUE
Passes < 0

Do until Swapped == FALSE or Max ==
Swapped < FALSE
Max < Max - 1
Passes < Passes + 1
For a = @ to max
If List(a) > List(a + 1)
Temp < List(a)
List(a) < List(a + 1)
List(a + 1) < Temp
Swapped < TRUE
End If
Next
Loop

OUTPUT Passes
OUTPUT List

© www.pmteducaton Q@ @) PMTEducation

SPMT 3

resources-tuition-courses

Merge Sort

A merge sort orders arrays by splitting them into smaller lists, and then reforming them -
the ‘divide and conquer’ method. It is quicker than a bubble sort; it has a time
complexity of O(nlogn).

Merge Sort Example 1:

Here is an unsorted list.

2 [[11) 8| 3| 7 611012

The first stage in a merge sort is to split the list into two smaller lists.

2 |11 8 |37 6]18|12

These lists are still unsorted, so they need to be split further.

2118 761{3\

© wwwpmteducaton Q@@ C) PMTEducation

SEPMT

resources-tuition-courses

These lists are unsorted, with two elements; they need to be split further.

2 11 8 3 7 6 18 12

Now there are eight lists each with one element. Since there is only one element in
each, they are all ordered lists. Now they can be put back together by comparison. We
start with the first two lists.

2 11

2 <11, so the ordered list is 2, 11.

2 11
N/

2 || 11

© www.pmteducaton Q@ @) PMTEducation

‘ SPMT

resources-tuition-courses

Our collection of lists looks like this:

2 {11 8 3 7 6 10 12

The next pairis 8 and 3. 8 > 3 so they are paired up like this.

2 |11 3 || 8 7 6 10 12

The next pairis 7 and 6. 7 > 6, so they are combined with 6 as the first element in the
list.

2 |11 3 || 8 6| 7/ 10 12

The last pairis 10 and 12. 10 < 12, so they are paired up as follows.

2 |11 3 || 8 6| 7/ 10| 12

We now have four sorted lists, each containing two elements. The next stage is to once
again consider adjacent lists. We start with the first two lists, (2,11) and (3,8).

2 |11 3 || 8

The smallest element in the first list is 2, and the smallest element in the second list is 3.

2 |11 3 || 8

© www.pmteducaton Q@ @) PMTEducation

s PMIT

resources-tuition-courses

2 < 3, so it is added to the new list first.

11 31| 8

Now the smallest element in the first list is 11.

11 3 || 8

3 <11, soitis added to the list next.

11 8

© www.pmteducaton Q@ @) PMTEducation

SEPMT

resources-tuition-courses

Now the smallest element in the second list is 8.

11 8

8 <11, so itis added to the list first.

11

/

The final element is 11, so it goes on the end of the sorted list.

2 || 31| 8|11

© www.pmteducaton Q@ @) PMTEducation

SEPMT

resources-tuition-courses

All of our lists together look like this.

2 || 3 || 811 6 7 10 12

We now need to put together the other two lists. The smallest element in the orange list
is 6, and the smallest element in the pink list is 10.

2 || 3 || 8|11 6| 7 18] 12

6 <10 so it is added to the new sorted list first.

2 || 3 || 811 7 10| 12

7 is now the smallest element in the orange list.

2 (3| 8|11 7/ 10| 12

© www.pmteducaton Q@ @) PMTEducation

SEPMT

resources-tuition-courses

7 <10 so 7 is added first.

2

3

8 |11 10| 12

The pink list is already sorted, so it can be added onto the end of the 6 and 7.

2

3

8 || 11 6 7 10 12

We have two sorted lists each of four elements. The process of combining lists is
repeated. The smallest element in the blue list is 2, and the smallest element in the

green list is 6.

2

8 || 11 6 7 10 12

2 < 6. 2 is first on the sorted list.

3

8

11 6 7 10 12

© www.pmteducaton Q@ @) PMTEducation

SEPMT

resources-tuition-courses

The smallest element in the blue list is 3.

3

8

11

10

12

3 < 6, so 3 the next element on the sorted list.

8

11

The smallest element in the blue list is 8.

8

11

© www.pmt.education

10

12

10

12

000

PMTEducation

SPMT

----------- tuition-courses

6 < 8, so 6 is added next.

8 || 11 7 16 12

The smallest item in the green listis 7.

8 || 11 7 116 12

8 > 7. Hence, 7 is next on the list.

8 || 11 16 12

10O,

© www.pmteducaton Q@ @) PMTEducation

SEPMT

resources-tuition-courses

The smallest element in the green list is 10.

8

11

8 < 10. 8 is added next.

11

The smallest item in the blue list is 11.

11

16

16

16

12

12

12

© www.pmteducaton Q@ @) PMTEducation

11 >10. Thus, 10 is added next.

]

11

PMI

resources-tuition-courses

12

12

2 | 3] 6 8 |16
12 is the smallest element in the green list.
11
2 | 3] 6 8 |10
11 <12. 11 is added to the list.
2 3] 6 8 |10 11

© www.pmteducaton Q@ @) PMTEducation

12

(—

PMI

resources-tuition-courses

The blue list is empty, so the contents of the ordered green list can be added to the end
of the black list. This is our final ordered list.

2

3| 6

7

10

11 (|12

Merge Sort Example 2:

Here is an unsorted array:

Julian || Georgina | | Timmy || Anne || Richard
The first step is to split the array into two.
Julian || Georgina || Timmy | Anne || Richard
' ~
Julian || Georgina || Timmy Anne || Richard
Split them again.
Julian || Georgina Timmy Anne Richard
/ ~
Julian || Georgina || Timmy Anne || Richard
Julian || Georgina Timmy Anne Richard
© www.pmteducaton Q@ @) PMTEducation

(—

PMI

resources-tuition-courses

Julian and Georgina are still a pair, so they need to be split again.

Julian || Georgina Timmy Anne Richard
/ | ~
Julian || Georgina || Timmy Anne || Richard
/ | S / \
. | . i
Julian || Georgina Timmy Anne Richard
| \
Julian Georgina
Reform the lists by merging ordered single items. Julian & Georgina:
Julian || Georgina Timmy Anne Richard
/ | N\
Julian || Georgina Timmy Anne || Richard
. | .
Julian || Georgina Timmy Anne Richard
| \
Julian Georgina
Georgina Julian
© www.pmteducaton Q@ @) PMTEducation

PMI

resources-tuition-courses

]

Reform the lists by creating ordered pairs. Anne & Richard:

Julian || Georgina Timmy Anne Richard
/ | \|
Julian || Georgina || Timmy Anne | Richard
' |
‘/ N / N
Julian ‘ Georgina Timmy Anne Richard
N N/
Julian Georgina Anne || richard
Georgina || Julian
Reform lists with further comparisons.
Julian || Georgina | | Timmy ‘ Anne || richard
J/ | \|
|
Julian || Georgina Timmy Anne | Richard
|
Julian ‘ Georgina -I-:i_|'|"||'|'|':.'|ir Anne Richard
N\ N4
Julian Georgina Anne Richard
Georgina || Julian
N
Georgina || Julian Timmy
© www.pmteducaton Q@ @) PMTEducation

SEPMT

resources-tuition-courses

Finally, merge both sorted lists together.

Julian || Georgina | | Timmy ‘ Anne || Richard

% | N
Julian Georgina ‘ Timmy Anne Richard
/ RN / N
Julian | Georgina Timmy Anne Richard
| | \ N Y
Julian Georgina Anne Richard

N

Georgina || Julian

N\
Georgina || Julian || Timmy

T~

Anne || Georgina || Julian || Richard Timmy

© www.pmteducaton Q@ @) PMTEducation

